sábado, 12 de enero de 2013

Trabajos de Mendel (3er Año)


Leyes de Mendel

Las Leyes de Mendel son el conjunto de reglas básicas sobre la transmisión por herencia de las características de los organismos padres a sus hijos. Estas reglas básicas de herencia constituyen el fundamento de la genética. Las leyes se derivan del trabajo realizado por Gregor Mendel publicado en el año 1865 y el 1866, aunque fue ignorado por mucho tiempo hasta su redescubrimiento en1900.
La historia de la ciencia encuentra en la herencia mendeliana un hito en la evolución de la biología sólo comparable con las Leyes de Newton en el desarrollo de la Física. Tal valoración se basa en el hecho de que Mendel fue el primero en formular con total precisión una nueva teoría de la herencia, expresada en lo que luego se llamaría "Leyes de Mendel", que se enfrentaba a la poco rigurosa teoría de la herencia por mezcla de sangre. Esta teoría aportó a los estudios biológicos las nociones básicas de la genética moderna.

Experimentos


Los siete caracteres que observó G. Mendel en sus experiencias genéticas con los guisantes.
Mendel publicó sus experimentos con guisantes en 1865 y 1866. A continuación se describen las principales ventajas de la elección de Pisum sativum como organismo modelo: su bajo coste, tiempo de generación corto, elevado índice de descendencia, diversas variedades dentro de la misma especie (color, forma, tamaño, etc.). Además, reúne características típicas de las plantas experimentales, como poseer caracteres diferenciales constantes.
Pisum sativum es una planta autógama, es decir, se autofecunda. Mendel lo evitó emasculándola (eliminando lasanteras). Así pudo cruzar exclusivamente las variedades deseadas. También embolsó las flores para proteger a los híbridos de polen no controlado durante la floración. Llevó a cabo un experimento control realizando cruzamientos durante dos generaciones sucesivas mediante autofecundación para obtener líneas puras para cada carácter.

Patrones de herencia mendeliana


Mendel describió dos tipos de "factores" (genes) de acuerdo a su expresión fenotípica en la descendencia, los dominantes y los recesivos, pero existe otro factor a tener en cuenta en organismos dioicos y es el hecho de que los individuos de sexo femenino tienen dos cromosomas X (XX) mientras los masculinos tienen un cromosoma X y uno Y (XY), con lo cual quedan conformados cuatro modos o "patrones" según los cuales se puede trasmitir una mutación simple:
  • Gen dominante ubicado en un autosoma (herencia autosómica dominante).
  • Gen recesivo ubicado en un autosoma (herencia autosómica recesiva).
  • Gen dominante situado en el cromosoma X (herencia dominante ligada al cromosoma X).
  • Gen recesivo situado en el cromosoma X (herencia recesiva ligada al cromosoma X).


[editar]Definiciones Básicas 

Actividad (Los alumnos deben tener en su cuaderno y aprender)

  • Factor mendeliano: el concepto de factor mendeliano fue introducido en 1860 por Mendel, actualmente denominado gen, éste se puede definir como una unidad física y funcional que ocupa una posición específica en el genoma
  • Gen: es una región de DNA que codifica para RNA.
  • Genotipo: factores hereditarios internos de un organismo, sus genes y por extensión su genoma.
  • Fenotipo: las cualidades físicas observables en un organismo, incluyendo su morfología, fisiología y conducta a todos los niveles de descripción.
  • Alelo: es cada una de las variantes de un locus. Cada alelo aporta diferentes variaciones al carácter que afecta. En organismos diploides (2n) los alelos de un mismo locus se ubican físicamente en los pares de cromosomas homólogos.
  • Locus: ubicación del gen en un cromosoma. Para un locus puede haber varios alelos posibles. (Plural: loci)
  • Cariotipo: composición fotográfica de los pares de cromosomas de una célula, ordenados según un patrón estándar. En un cariotipo encontramos el conjunto de características que permiten reconocer la dotación cromosómica de una célula.
  • Línea pura: es la descendencia de uno o más individuos de constitución genética idéntica, obteniéndose por autofecundación o cruces endogámicos. Son individuos homocigotos para todos sus caracteres.
  • Autofecundación: proceso de reproducción sexual donde los gametos masculinos de un individuo se fecundan con los óvulos del mismo individuo. Es indispensable que sean especies monoicas (característico de las plantas y algunos animales inferiores).
  • Dominancia, Alelo dominante: predominio de la acción en un alelo sobre la de su alternativo (llamado alelo recesivo), enmascarando u ocultando sus efectos. El carácter hereditario dominante es el que se manifiesta en el fenotipo (conjunto de las propiedades manifiestas en un individuo). Según la terminología mendeliana se expresa como A>a (el alelo A domina sobre el alelo a, el carácter que determina, es por tanto el que observaremos en el fenotipo).
  • Recesividad, Alelo recesivo: característica del alelo recesivo de un gen que no se manifiesta cuando está presente el alelo dominante. Para que este alelo se observe en el fenotipo, el organismo debe poseer dos copias del mismo alelo, es decir, debe ser homocigoto para ese gen (según la terminología mendeliana, se expresaría como “aa”).
  • Meiosis: es el proceso de división celular que permite a una célula diploide generar células haploides en eucariotas. En este proceso se produce una replicación del DNA (en la fase S) y dos segregaciones cromosómicas, de manera que de una célula inicial diploide se obtienen cuatro células haploides.
  • Homocigoto: individuo puro para uno o más caracteres, es decir, que en ambos loci posee el mismo alelo (representado como aa en el caso de ser recesivo o AA si es dominante).
  • Heterocigoto: individuo que para un gen, tiene un alelo distinto en cada cromosoma homólogo. Su representación mendeliana es “Aa”.
  • Híbrido: es el resultado del cruzamiento o apareamiento de dos individuos puros homocigotos (uno de ellos recesivo y el otro dominante) para uno o varios caracteres.
  • Gameto: célula sexual que procede de una estirpe celular llamada línea germinal, en los seres superiores tienen un número de cromosomas haploide (n) debido a un tipo de división celular llamado meiosis que permite reducir el número de cromosomas a la mitad. El gameto femenino se denomina óvulo; el gameto masculino recibe el nombre de espermatozoide.
  • Cigoto o huevo: célula resultante de la unión de dos gametos haploides (es por tanto, diploide, 2n). Generalmente, experimenta una serie de divisiones celulares hasta que se constituye en un organismo completo. Su citoplasma y sus orgánulos son siempre de origen materno al proceder del óvulo.
  • Haploide: que posee un solo juego de cromosomas (n), característico de los gametos eucariotas y los gametofitos de las plantas.
  • Diploide: que tiene doble juego de cromosomas (2n). Características de las células somáticas.
  • Autosoma: todo cromosoma que no sea sexual.

Ejercicios de la 1era Ley de Mendel.
  1. Cruce entre individuos de razas puras. Si A significa color moreno y a significa color de pelo rubio, ¿que color de pelo tendrán los individuos de 1era generación Filial? 
  2. Determinar el genotipo del F1 de un cruce monohibrido de arvejas de tallo redondo homocigotos, con arvejas de tallo delgado heterocigotas. El Carácter tallo redondo es dominante y tallo delgado es recesivo.
  3. Se cruzo una planta de arvejas homocigotas con flores terminales, con otra planta flores axiales. el resultado de la F1 fue: un 50% de plantas con flores axiales y un 50% con flores terminales. ¿Cuál es el genotipo de la generacion parental (P1)?
  4. Al cruzar dos moscas negras se obtiene una descendencia formada por 216 moscas negras y 72 
  5. blancas. Representando por NN el color negro y por nn el color blanco, razónese el cruzamiento y 
  6. cuál será el genotipo de las moscas que se cruzan y de la descendencia obtenida.
  7. El pelo rizado en los perros domina sobre el pelo liso. Una pareja de pelo rizado tuvo un cachorro de 
  8. pelo también rizado y del que se quiere saber si es heterocigótico. ¿Con qué tipo de hembras tendrá que cruzarse? Razónese dicho cruzamiento. 
  9. Una mariposa de alas grises se cruza con una de alas negras y se obtiene un descendencia formada 
  10. por 116 mariposas de alas negras y 115 mariposas de alas grises. Si la mariposa de alas grises se 
  11. cruza con una de alas blancas se obtienen 93 mariposas de alas blancas y 94 mariposas de alas 
  12. grises. Razona ambos cruzamientos indicando cómo son los genotipos de las mariposas que se 
  13. cruzan y de la descendencia.


No hay comentarios:

Publicar un comentario